應用

技術

物聯網世界 >> 物聯網新聞 >> 物聯網熱點新聞
企業注冊個人注冊登錄

下一代智能設備的關鍵技術:室內定位與導航芯片

2019-11-05 09:06 半導體行業觀察

導讀:一旦室內導航SLAM系統和算法確定之后,中國芯片公司也將會成為主流供貨商。

芯片 半導體 ,室內定位與導航,導航精度,導航芯片,智能裝備,SLAM芯片

圖片來自“Unsplash”


人們對于以GPS為代表的定位和導航技術并不陌生,使用百度地圖等APP配合GPS在戶外場景中導航已經成為日常生活中常見的一幕。隨著技術和應用場景的演進,對于室內導航的需求正在逐漸上升。室內導航和室外導航有諸多不同的技術需求,而為室內導航專門設計的硬件芯片有希望成為GPS的補充進入相關的設備中。

為什么需要室內定位和導航

說起室內導航,大家的第一個想法可能就是,為什么不能用GPS?其主要原因在于信號和精度問題。GPS使用的是衛星信號,在地面接收到的信號非常微弱,其最理想的使用場景在開闊且沒有遮擋的室外場景,而在室內,甚至是在一些城市里建筑物比較密集的區域就會出現信號被遮擋的情況,反映到定位上的表現就是遲遲無法搜索到GPS信號。

除了信號問題之外,另一個室內導航和室外導航的區別在于精度。對于駕駛等室外導航應用,通常精度需求在幾米的數量級就可以接受,而對于室內導航來說其精度需求往往比室外導航有數量級的提升,因此必須有相應的技術。

室內定位和導航第一個重要應用在于包括無人機在內的機器人導航。對于大型貨倉等應用場景,室內定位和室內導航技術至關重要。利用室內導航技術,機器人可以制定最優路線以到達目的地,而室內定位技術則能在多機器人的應用場景下提供每個機器人的位置,從而幫助每個機器人在導航時考慮到其他機器人的位置以避免堵塞。

除了機器人應用之外,另一個重要的室內導航和定位的技術是下一代智能設備,尤其是AR/VR頭戴設備。在典型的AR應用中,虛擬內容會顯示在現實世界中的固定位置(例如下圖中的宇航員和地球出現在桌子上)。

為了讓這些虛擬物體看上去更具真實感,我們希望這些虛擬物體能看上去是固定在物理世界中的某個位置而不會隨著用戶移動而改變。為了實現這一點,必須有非常精準的室內定位和導航技術。

舉例來說,如果我們希望在佩戴AR眼鏡時在桌子上召喚出一個地球和宇航員的虛擬物體,那么首先我們需要有室內定位系統把桌子的位置給確定下來,從而當用戶移動到桌子附近的時候可以在桌子上顯示相關虛擬物體;此外,隨著用戶的位置移動,必須要渲染虛擬物體不同的尺寸和視角以滿足真實感,因此會需要非常精確的室內導航系統知道用戶是怎么移動的。

室內定位原理和相關芯片分析

室內定位最基本的原理是多基站原理,即根據設備和多個已知位置的基站之間的信號關系來判斷設備的位置。如果我們有三個以上的基站且能計算出設備到每個基站之間的距離,那么根據幾何原理我們就可以獲取設備的位置。

室內定位的基礎版本可以說是藍牙/WiFi信號定位。此類定位技術上根據設備到已知基站(路由器)之間的WiFI/藍牙信號強度信息來估計設備的位置。由于WiFi/藍牙信號的強度會收到出了距離之外的其他因素影響(例如遮擋),因此基于WiFI/藍牙的室內定位精度通常在米數量級。

藍牙/WiFi信號定位

除了利用WiFi/藍牙等基于信號強度來估計距離之外,還可以利用超寬帶(UWB)技術來實現更高精度的室內定位。UWB定位芯片目前得到了業界的認可,蘋果的最新iPhone即搭載了自主研發的U1芯片用于UWB定位。

UWB定位技術是基于UWB信號規范。與傳統的無線通信高功率高集中度的頻譜不同,UWB把信號功率分散在非常寬的頻譜上。因此,即使UWB信號總的功率并不低,但是每個頻點的功率密度很低,因此對于其他使用該頻段的通信協議造成的干擾非常小。

UWB超寬帶頻譜信號反映到時域就是一個非常短的脈沖。因此,其時域信號與雷達的脈沖信號很接近,這也是為什么UWB可以利用類似雷達的原理去做與基站之間的距離估計以實現室內定位。與基于WiFi/藍牙無線信號強度的距離估計相比,基于UWB的距離估計使用的是信號的飛行時間(與雷達相同),即設備發射一列UWB脈沖信號并根據回波的時間差來估計與基站的距離。因此,UWB信號做定位不受遮擋的影響,可以做到更高的定位精度(十厘米級別精度,相比米級別的精度好了一個數量級)。

UWB脈沖信號

蘋果的U1芯片目前已經進入主流手機,我們認為UWB高精度室內定位可望為下一代智能設備中的重要應用賦能,這類應用包括AR等相關應用。從芯片設計的角度考慮,UWB芯片的主要設計難度在于如何設計一個能在很寬頻率范圍內都有較好頻率響應的射頻系統。

與傳統通訊系統中的帶通射頻系統不同,UWB系統的頻率范圍要高10倍以上,而UWB信號在每一個頻點的信號功率密度都很低,因此如何克服寬帶內噪聲的問題將是接收機的一個重要課題。

此外,UWB系統的天線需要滿足寬頻帶,這與傳統通信系統中的窄帶天線不同。如果UWB定位系統中的設備端需要同時判斷基站與設備之間的方向關系,那么還會需要設計一個天線陣列,這也增加了設計的難度。從功耗上來說,UWB的功耗通常較低,因此我們可望看到UWB技術進入更多的智能設備中。

室內導航芯片

室內定位可以提供設備的位置(精確到米或者0.1米的數量級),而室內導航技術則從另一個角度提供設備的精確運動軌跡。

精確運動軌跡對于許多任務來說至關重要(例如家用掃地機器人就需要能知道自己的運動軌跡以判斷哪些位置已經掃過哪些沒有),而精確運動軌跡對于每次測量之間相對誤差的需求往往小于10厘米,因此光靠室內定位就不夠用(例如每次室內定位的精度在10厘米級別,那么兩次定位之間的相對誤差最多就會到20厘米,對于軌跡來說誤差太大)。

室內導航的主要技術是SLAM技術,即同時完成定位和環境的地圖建模。目前應用在消費應用中的SLAM技術可以分成兩類,一類是基于慣性傳感器加視覺的SLAM方案,另一類是僅僅基于視覺的SLAM方案。

SLAM對于算力的需求很高。這是因為SLAM算法的本質是找到環境中的特征點,根據環境特征點的變化來估計設備的移動軌跡。例如,SLAM算法需要首先從攝像頭傳感器的圖像中去提取特征點(可以用傳統的sift等特征,也可以用基于神經網絡的特征),之后需要做特征點匹配算法,再之后才是移動估計。這一套算法在DSP或CPU上的執行效率都不夠高,因此需要使用專用加速器芯片來實現高效率SLAM。

隨著室內導航應用在機器人和AR/VR設備上的普及,我們可望見到SLAM加速器芯片或專用IP進入相關設備SoC。

目前,室內導航SLAM芯片在學術界已經得到了廣泛的重視,也有一些芯片研究發表在ISSCC或VLSI Symposium等重要的會議上。對于基于IMU和視覺的SLAM,MIT的Amr Suleiman在今年早些時候發表了Navion系列芯片,該芯片把IMU+視覺 SLAM的整個計算流水線都放到了芯片上,同時做了圖像壓縮、稀疏計算優化等優化,最終能實現低至2mW的計算功耗,因此非常適合微型無人機等需要SLAM但是對于功耗非常敏感的應用。

Navion芯片

在純視覺SLAM方面,由于沒法借助IMU,而必須純粹靠視覺特征點的匹配和位移去做運動軌跡估計,因此算法要更復雜一些。該領域的芯片最新的研究成果是密歇根大學發表在ISSCC 2019上的視覺SLAM加速芯片,該芯片使用卷積神經網絡做特征提取,并且對于特征點匹配、深度估計等都做了相應優化,最終整體芯片的功耗僅240mW。

展望未來

隨著下一代智能設備和機器人應用的普及,我們認為相應的室內定位和室內導航專用硬件會成為一個專門的品類,而相應的芯片也會有可觀的出貨量,蘋果的UWB室內定位芯片就是一個例子。

在室內定位方面,以UWB為代表的下一代室內定位芯片將會逐漸成為主流。室內定位芯片主要是射頻系統芯片,我們認為中國半導體行業在該領域并不落后美國太多,因此如果UWB真正得到廣泛認可我們期望看到許多中國芯片廠商成為該領域的重要出貨商。

在室內導航方面,SLAM芯片實質上是專用的算法加速芯片,其本質類似于攝像頭ISP。因此,該芯片的主要挑戰不僅僅在于電路設計,而更在于算法的選擇和參數調優,一旦有了公認的主流算法,那么中國半導體行業在相應的芯片設計方面將會很快占據主導地位。這一點其實和人工智能芯片很像,在卷積神經網絡確定成為主流算法之后,中國已經誕生了許多家能走在世界前列的人工智能芯片公司。一旦室內導航SLAM系統和算法確定之后,中國芯片公司也將會成為主流供貨商。


11选五杀号技巧